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ABSTRACT 

The rate at which organizations are acquiring data is exploding and managing such data so as to infer useful knowledge 
that can be put to use is increasingly becoming important. Data Mining (DM) is one such technology that is employed in 
inferring useful knowledge that can be put to use from a vast amount of data. This paper presents the data mining activity 
that was employed in weather data prediction or forecasting. The self-organizing data mining approach employed is the 
enhanced Group Method of Data Handling (e-GMDH). The weather data used for the DM research include daily 
temperature, daily pressure and monthly rainfall. Experimental results indicate that the proposed approach is useful for 
data mining technique for forecasting weather data. 

1.  INTRODUCTION 

Knowledge discovery in databases (KDD) process is well documented in the literature [1—7]. A wide variety 
of data-mining model representation methods exist, but here, we only focus on a subset of popular 
techniques, which include decision trees and rules [8], [9], linear models, nonlinear models e.g., neural 
networks (see [7], [10], [11] for more detailed discussions), example-based methods (e.g., nearest-neighbor 
and case-based reasoning methods) [12], probabilistic graphical dependency models e.g., Bayesian networks 
[13]—[15], and relational attribute models [16]. Model representation determines both the flexibility of the 
model in representing the data and the interpretability of the model in human terms. Typically, the more 
complex models may fit the data better but may also be more difficult to understand and to fit reliably. While 
researchers tend to advocate complex models, practitioners involved in successful applications often use 
simpler models due to their robustness and interpretability [2—5]. 

In this paper, we present the DM process applied to weather data acquired at the School of Engineering 
and Physics, University of the South Pacific, Fiji to demonstrate the usefulness of this emerging technology 
in practical real-life applications. The weather data include daily temperature and pressure observed using 
automated instruments and a chaotic rainfall data set observed for the city of Suva. 

2.  SELF-ORGANIZING DATA MINING 

Experience gained from expert systems, statistics, Neural Networks or other modeling methods has shown 
that there is a need to try to limit the involvement of modelers (users) in the overall knowledge extraction 
process to the inclusion of existing a priori knowledge, exclusively, while making the process more 
automated and more objective. Additionally, most users’ interest is in results in their field and they may not 
have time for learning advanced mathematical, cybernetic and statistical techniques and/or for using dialog 
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driven modeling tools. Self-organizing modeling is based on these demands and is a powerful way to 
generate models from ill-defined problems.  

A powerful method for model self-organization is the Group Method of Data Handling (GMDH) invented 
by Ivakhnenko [17],[18]. GMDH combines the best of both statistics and Neural Networks features while 
considering a very important additional principle of induction. This cybernetic principle enables GMDH to 
perform not only in advanced model parameter estimation but, more important, to perform an automatic 
model structure synthesis and model validation, too. GMDH creates adaptively models from data in form of 
networks of optimized transfer functions (active neurons) in a repetitive generation of populations (layers or 
generations) of alternative models of growing complexity and corresponding model validation and fitness 
selection until an optimal complex model which is not too simple and not too complex (over-fitted) has been 
created. Neither, the number of neurons and the number of layers in the network, nor the actual behavior of 
each created neuron (transfer function of active neuron) are predefined. All these are adjusted during the 
process of self-organization by the process itself. As a result, an explicit analytical model representing 
relevant relationships between input and output variables is available immediately after modeling. This 
model contains the extracted knowledge applicable for interpretation, prediction, classification or diagnosis 
problems. For detailed discussion of GMDH for self-organizing data mining applications, see [19]. Other 
self-organizing network variants derived from GMDH include polynomial neural networks [20]. In a wider 
sense, the spectrum of self-organizing modeling contains regression-based methods, rule-based methods, 
symbolic modeling and nonparametric model selection methods. 

a. regression-based methods 
Commonly, statistically-based principles are used to select parametric models. Besides sophisticated 

methods of mathematical statistics there has been much publicity about the ability of Artificial Neural 
Networks to learn and to generalize. However, Sarle [21] has shown that models commonly obtained by 
Neural Networks are overfitted multivariate multiple nonlinear (specifically linear) regression functions. 

b. rule -based models in the form of binary or fuzzy logic  
Rule induction from data uses genetic algorithms where the representation of models is in the familiar 

disjunctive normal form. A self-organizing fuzzy modeling may come to be more important for ill-defined 
problems using GMDH algorithm. 

c. symbolic modeling 
Self-organizing structured modeling uses a symbolic generation of an appropriate model structure 

(algebraic formula or complex process models) and optimization or identification of a related set of 
parameters by means of genetic algorithms. This approach assumes that the elementary components are 
predefined (model base) and suitably genetically coded. 

d. nonparametric models  
Known nonparametric model selection methods include: Analog Complexing (AC) which selects 

nonparametric prediction models from a given data set representing one or more patterns of a trajectory of 
past behavior which are analogous to a chosen reference pattern and Objective Cluster Analysis (OCA). 

Table 1 shows some data mining functions and more appropriate self-organizing modeling algorithms for 
addressing these functions. 

Table 1. Algorithms for self-organizing modeling 

Data Mining functions  Algorithm 
classification  GMDH, FRI, AC 
clustering  AC 
modeling  GMDH, FRI 
time series forecasting  AC, GMDH, FRI 
sequential patterns AC 

3.  THE GROUP METHOD OF DATA HANDLING (GMDH)  

The basics steps involved in the original Group Method of Data Handling (GMDH) modeling approach [17] 
are as follows: 
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Preamble: collect regression-type data of n-observations and divide the data into training and testing sets: 
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Order Z  according to the least square error Rdd jk <  where R is some prescribed number chosen a 

priori. Replace columns of X with the best ( )RZsZ <' ; in other words, RR ZX << ←  
Step 4: Test for convergence. Let .kdDMIN =  If 1−= kk DMINDMIN  go to Step 1, else stop the process. 
Since the introduction of GMDH, there have been variants devised from different perspectives to realize 
more competitive networks. The one employed in this paper is an enhanced version, e-GMDH [22]. 

4.  DATA MINING EXPERIMENTATION 

Rainfall prediction is very important to countries thriving on agro-based economy. In general, 
climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly 
effect". The parameters that are required to predict the rainfall are enormously complex and subtle so that 
uncertainty in a prediction using all these parameters is enormous even for a short period. Soft computing is 
an innovative approach to construct computationally intelligent systems that are supposed to possess 
humanlike expertise within a specific domain, adapt themselves and learn to do better in changing 
environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques 
the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial 
truth to achieve tractability, and better rapport with reality [11]. In this paper, we analyzed 13 years of 
rainfall data in Suva, the capital of Fiji. We attempted to train 3 prediction models using soft computing 
techniques with half the period of rainfall data. For performance evaluation, network predicted outputs were 
compared with the actual rainfall data.  

4.1 Data Gathering 

The weather data used for the data mining application described in this paper was acquired at the School of 
Engineering & Physics, University of the South Pacific, Fiji. The weather data include daily temperature and 
pressure observed from 2000—2007 using automated instruments and a chaotic rainfall data set observed for 
the city of Suva. The weather instruments used for gathering data used in this paper include HMP45D 
Humidity and Temperature Probe®, and T133P-XXHS Tipping Bucket Rain-gauge® with 0.5 mm plastic 
bucket calibration and 5 m cable. Campbell Scientific CR23X® data logger was used to capture the weather 
data from the local weather station to a dedicated PC located in the Physics laboratory. The transmitted 
weather data was then copied to Excel spreadsheets and archived on daily basis as well as monthly basis to 
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ease data identification. The day-to-day management of the instruments is undertaken by a Senior 
Technician. 

4.2 Data Cleansing 

In order to utilize the acquired weather data, some of the authors of this paper engaged some students as 
Research Assistants to organize the data which where copied to CDs into a daily logical datasets and also to 
convert the Julian dates into recognizable yearly dates. One of the authors was responsible for cross-checking 
all the acquired data and eliminating all possible errors such as those recorded when the weather recording 
instruments would have possibly failed (signified by some suspicious number) for a time interval and where 
blanks were found on the Excel data sheet. There was the need to eliminate such errors and/or bogus data to 
ensure data-integrity.  

4.3 Feature Extraction 

The data logger used for the data acquisition system acquires daily rainfall, temperature, humidity, wind 
speed, wind direction, and radiation. It was therefore necessary to extract only the interesting attributes of the 
data for our experimentation purpose. 

4.4 Pattern Extraction and Discovery  

The self-organizing GMDH technique was used for the purpose of extraction and discovery of knowledge of 
the data acquired; this is the core of data mining. There were 1922 rows of data for both temperature and 
pressure. A time lag = 5 was used for experimentation in all cases. The forecasting evaluation criteria used 
for all the experiments is the normalized mean squared error (Variation Accuracy Criterion or Ivachnenko’s 
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where iy  and iŷ are the actual and predicted values, σ  is the estimated variance of the data and iy the 
mean. The ability to forecast movement direction or turning points can be measured by a statistic developed 
by Yao and Tan [23]. Directional change statistics ( statD ) can be expressed as 
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where 1=ta if ( )( ) ,0ˆˆ 11 ≥−−= ++ yyyya tttt  and 0=ta  otherwise. 

Case 1: University of South Pacific monthly temperature  

For the 1922 rows of daily temperature over the period of 2000—2007 the average, minimum, maximum, 
and standard deviation are respectively Co98.25 , Co51.20 , Co19.30 , and Co71.1 . Using the time-lag 
approach, five columns of input data were generated with one column as output; the number of rows 
therefore reduced to 1918. The external criterion that was used for the GMDH approach for this particular 
experimentation is the VAC, Variation Accuracy Criterion (Ivachnenko delta-squared). The coefficient of 
determination (r-squared value), r2 = 0.8910 and the directional statistics value, ds = 44.2067. The graphical-
representation of e-GMDH network connections after pruning is shown in Figure 1. Figure 2 shows how the 
performance index on training data decreases for different layers as well as how the performance index on 
testing data decreases for different layers until layer 5. Figure 3 shows the GMDH prediction and absolute 
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difference error for the daily temperature data mining problem. The absolute difference error, is found be 
within the range of 5.1± . Here, there is an excellent match between the measured and predicted values, 
showing that the proposed e-GMDH model can be used as a feasible solution for exchange rate forecasting.  

Node types:
input / unknown

polynomial
cosine
sq root
inv polynom
logarithmic
exponential
arcus tan
rounded pol

 
Figure 1. Graphical-representation of e-GMDH network connections after pruning 
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Figure 2. Performance indices on training (PI) and testing (EPI) datasets for different layers 
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Figure 3. The GMDH actual and predicted values and absolute difference error for the temperature problem 

Case 2: University of South Pacific monthly pressure 

For the 1922 rows of daily pressure over the period of 2000—2007 the average, minimum, maximum, and 
standard deviation are respectively 2.95 bar, 1.601 bar, 4.052 bar, and 0.49 bar. Using the time-lag approach, 
five columns of input data were generated with one column as output; the number of rows therefore reduced 
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to 1918. The external criterion that was used for the GMDH approach for this particular experimentation is 
the VAC, Variation Accuracy Criterion (Ivachnenko delta-squared). The coefficient of determination (r-
squared value), r2 = 0.9437 and the directional statistics value, ds = 54.9061. Figure 4 shows the GMDH 
prediction and absolute difference error for the daily temperature data mining problem. The absolute 
difference error, is found be within the range of 3.0± . 
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Figure 4. The GMDH actual and predicted values and percentage difference error for the pressure problem 
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Figure 5. The GMDH actual and predicted values and percentage difference error for the rainfall problem 

Case 3: Suva normalized monthly rainfall 

Additional study included that of a chaotic dataset representing the monthly rainfall of Suva for the period of 
1990—2002 [24], giving 156 rows of data. The average, minimum, maximum, and standard deviation are 
respectively 236.9 mm, 27.3 mm, 645.6 mm, and 135.5 mm. Using the time-lag approach, five columns of 
input data were generated with one column as output; the number of rows therefore reduced to 152. The 
external criterion that was used for the GMDH approach for this particular experimentation is the VAC, 
Variation Accuracy Criterion (Ivachnenko delta-squared). The coefficient of determination (r-squared value), 
r2 = 0.3864 and the directional statistics value, ds = 51.9737. Due to the chaotic nature of this problem, the 

initial dataset was normalized according the following rule ⎟⎟
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corresponding to x. Figure 5 shows the GMDH prediction and absolute difference error for the daily 
temperature data mining problem. The absolute difference error, is found be within the range of 2.0± . Here, 
there is not a good match between the measured and predicted values.  
As already discussed, in general, climate and rainfall are highly non-linear phenomena in nature giving rise to 
what is known as "butterfly effect". It is not therefore surprising that the data collected for our mean rainfall 
experimentation has non-linear feature similar to previous research results reported [25-27]. 

4.5 Visualization of the Data 
It is generally agreed that visualization is a key aspect of a good data mining platform. Therefore, inclusion 
of Figures 1—5 enhances our e-GMDH-based data mining approach. Figure 1 is particular useful because it 
depicts how the e-GMDH network cascades as well helps the user to track the related nodes. 

4.6 Evaluation of Results 
The e-GMDH generalizes quite well for Cases 1 and 2 but not quite for Case 3. The data for Case 3 seems 
chaotic because the statistical data of minimum, maximum, and standard deviation which are respectively 
27.3 mm, 645.6 mm, and 135.5 mm, are quite unusual. The standard deviation is too high, and the difference 
between the maximum and minimum readings seems much. As part of validating the weather data acquired 
for this research, the Fiji Meteorological Service was visited to ensure that our instruments have been set up 
to World Meteorological Organization requirements/standards. 
In order to assess the efficacy of our e-GMDH, it was necessary to compare its performance for all three 
Cases studied. Its performance is compared with other variants of GMDH, such as polynomial neural 
network (PNN) and the enhanced version, e-PNN as shown in Table 2. The e-GMDH does best for the 
temperature problem but does not fair well in the pressure and rainfall problem when compared to PNN and 
its variant, e-PNN. The reason in these particular cases is unclear as e-GMDH generally outperforms PNN 
and its variant in most modeling and prediction problems.  

Table 2. Forecast performance evaluation for the three Cases 

 Daily Temperature  Daily Pressure  Monthly Rainfall 
 PI EPI  PI EPI  PI EPI 

PNN 0.2770 2.0290  0.0318 0.0258  0.0270 0.0275 
e-PNN 0.5895 0.6352  0.0286 0.0241  0.0810 0.0275 

e-GMDH 0.2162 0.1767  0.1128 0.0982  0.6800 0.8360 

5.  CONCLUSIONS 

This paper presents the data mining activity that was employed to mining weather data. The self-organizing data mining 
approach employed is the enhanced Group Method of Data Handling (e-GMDH). The weather data used for the DM 
research include daily temperature, daily pressure and monthly rainfall. Experimental results indicate that the proposed 
approach is useful for data mining technique for forecasting weather data. The results of e-GMDH were compared to 
those of PNN and its variant, e-PNN. The reason in these particular cases is unclear as e-GMDH generally outperforms 
PNN and its variant in most modeling and prediction problems. This paper has shown that end-users of data mining 
should endeavor to follow the methodology for DM since suspicious data points or outliers in a vast amount of data could 
give unrealistic results which may affect knowledge inference. Inclusion of the graphical network is a good visual 
instrument that would assist end-users to track how the e-GMDH advances in the search space. Empirical results also 
show that there are various advantages and disadvantages for the different techniques considered. There is little reason to 
expect that one can find a uniformly best learning algorithm for optimization of the performance for different weather 
datasets. This is in accordance with the no free lunch theorem, which explains that for any algorithm, any elevated 
performance over one class of problems is exactly paid for in performance over another class [28]. The dataset for the 
average monthly rainfall used in this research is available for researchers to experiment with, using various self-
organizing data mining techniques. Further work will include a graphical user interface (GUI) which is partly in place but 
needs to be updated to include the current functionalities. Plans are in place for a partnership arrangement between the 
Fiji Meteorological Service and University of the South Pacific with regards to the free exchange of weather data for 
academic purposes and weather and climate monitoring purposes. 
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